This rat model of cavernous nerve crush injury mimics neural damages associated with radical prostatectomy in human.

Pathophysiological features

Identically to human, the rat model of cavernous nerve crush injury displays ED (figure 1).

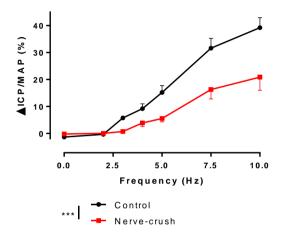


Figure 1: Effects of bilateral cavernous nerve crush injury (3 weeks post-surgery) on intracavernosal pressure (ICP) after ES CN in anesthetized rats (From Oudot et al, 2011).

Moreover, several pathophysiological mechanisms which are linked to radical prostatectomy-associated ED in human are present in rats with cavernous nerve crush injury:

- Penile nNOS immunoreactive fibers content decrease. (The brief activation of nNOS is involved in the initiation of the erectile process causing the increase in intracavernosal pressure).
- Cavernosal tissue remodeling and fibrosis.

Related Pelvipharm bibliography:

Oudot A *et al.* **Eur Urol** (2011):60(5):1020-1026 Bessede T *et al.* **J Sex Med** 5(s2) (ESSM 2008) Bessede T *et al.* **Eur Urol suppl** 7(3):161 (EAU 2008)

NB: Pelvipharm will gladly study the feasibility to fit this experimental model to its client's needs.